For example, if a line crosses the x-axis at point 4, the ordered pair for the x-intercept is (4,0){\displaystyle (4,0)}.

For example, you might be given the equation 2x+3y=6{\displaystyle 2x+3y=6}.

For example, if you substitute 0 for y{\displaystyle y}, your equation will look like this: 2x+3(0)=6{\displaystyle 2x+3(0)=6}, which simplifies to 2x=6{\displaystyle 2x=6}.

For example:2x=6{\displaystyle 2x=6}2x2=62{\displaystyle {\frac {2x}{2}}={\frac {6}{2}}}x=3{\displaystyle x=3}

For example, for the line 2x+3y=6{\displaystyle 2x+3y=6}, the x-intercept is at the point (3,0){\displaystyle (3,0)}.

For example, the equation x2+3x−10=0{\displaystyle x^{2}+3x-10=0} is a quadratic equation, so this line will have two x-intercepts.

For example, if the equation of your line is x2+3x−10=0{\displaystyle x^{2}+3x-10=0}, your quadratic formula will look like this: x=−3±32−4(1)(−10)2(1){\displaystyle x={\frac {-3\pm {\sqrt {3^{2}-4(1)(-10)}}}{2(1)}}}.

For example:x=−3±32−4(−10)2(1){\displaystyle x={\frac {-3\pm {\sqrt {3^{2}-4(-10)}}}{2(1)}}}x=−3±32+402{\displaystyle x={\frac {-3\pm {\sqrt {3^{2}+40}}}{2}}}

For example:x=−3±32+402{\displaystyle x={\frac {-3\pm {\sqrt {3^{2}+40}}}{2}}}x=−3±9+402{\displaystyle x={\frac {-3\pm {\sqrt {9+40}}}{2}}}x=−3±492{\displaystyle x={\frac {-3\pm {\sqrt {49}}}{2}}}

For example:x=−3+492{\displaystyle x={\frac {-3+{\sqrt {49}}}{2}}}x=−3+72{\displaystyle x={\frac {-3+7}{2}}}x=42{\displaystyle x={\frac {4}{2}}}x=2{\displaystyle x=2}

For example:x=−3−492{\displaystyle x={\frac {-3-{\sqrt {49}}}{2}}}x=−3−72{\displaystyle x={\frac {-3-7}{2}}}x=−102{\displaystyle x={\frac {-10}{2}}}x=−5{\displaystyle x=-5}

For example, for the line x2+3x−10=0{\displaystyle x^{2}+3x-10=0}, the x-intercepts are at points (2,0){\displaystyle (2,0)} and (−5,0){\displaystyle (-5,0)}.